
Appendix of
“Mind the Error Message”

Kazuhiro Tsunoda
k-tsunoda@prg.is.titech.ac.jp
Tokyo Institute of Technology

Tokyo, Japan

Hidehiko Masuhara
masuhara@acm.org

Tokyo Institute of Technology
Tokyo, Japan

Youyou Cong
cong@c.titech.ac.jp

Tokyo Institute of Technology
Tokyo, Japan

ABSTRACT
This is appendix of the paper “Mind the Error Message: an Inverted
Quiz Format to Direct Learner’s Attention to Error Messages”
ACM Reference Format:
Kazuhiro Tsunoda, Hidehiko Masuhara, and Youyou Cong. 2023. Appen-
dix of “Mind the Error Message”. In Proceedings of the 2023 Conference
on Innovation and Technology in Computer Science Education V. 1 (ITiCSE
2023), July 8–12, 2023, Turku, Finland. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3587102.3588823

A TASKS AND RESULTS OF PRELIMINARY
EXPERIMENT

Overview. Before the preliminary experiment, we asked three
participants about their programming experience in the question-
naire (Table 1).

In the preliminary experiment, we performed two debugging-
style exercises. We showed the two problems in Listing 1 and 2 in
order through screen sharing, and we asked participants to verbally
answer which part of the source code should be changed to solve the
error. For the first question, we gave the participants 3 minutes to
answer. If the participant failed to answer, we gave an explanation
of the correct solution. For the second question, we hid the problem
after 25 seconds, regardless of whether or not the student had
answered the question. Then we asked them to answer what was
written in the error message to the extent that they remembered.

Results. In the first question, all students could come up with an
appropriate solution to solve the error within 3 minutes. In the sec-
ond question, two students who had less programming experience
answered “It said that the parameter m was undefined/reassigned.””
This suggests that they payed attention to the non-essential part of
the error message. On the other hand, one student with a longer
programming experience answered ”It said that there were not
enough arguments for Child”, which was the essential part of the
error message.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE 2023, July 8–12, 2023, Turku, Finland
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0138-2/23/07…$15.00
https://doi.org/10.1145/3587102.3588823

Listing 1:Question 1
1 def xor(a: Boolean, b: Boolean): Boolean = {
2 if (a = !b) true
3 else false
4 }
5
6 //error message
7 // .../testq1.scala ;2;6; reassignment to val
8 // if(a = !b) true
9 // 　 　^

Listing 2:Question 2
1 abstract class FTree
2 case class End(name: String) extends FTree
3 case class Child(n: String, f: FTree, m: FTree) extends

FTree
4
5 def attach(tree: FTree): FTree = {
6 tree match {
7 case End(name) => End(name + "san")
8 case Child(n,f,m) => Child(attach(f),attach(m))
9 }
10 }
11
12 //error message
13 // .../testq2.scala:8:31: not enough arguments for method

apply: (n: String, f: FTree, m: FTree)Child in object
Child.

14 // Unspecified value parameter m.
15 // case Child(n,f,m) => Child(attach(f),attach(m))
16 // 　　　　　　　　　 　　　　^

Table 1: Result of preliminary experiment’s questions

student1 student2 student3
programming experience (Year) 〜1 1〜2 3〜5
question1 success success success
question2 inaccurate inaccurate accurate

https://doi.org/10.1145/3587102.3588823
https://doi.org/10.1145/3587102.3588823

ITiCSE 2023, July 8–12, 2023, Turku, Finland Tsunoda et al.

B ENBUGGING QUIZZES USED IN MAIN
EXPERIMENT

Listing 3: day5
1 //question code

2 def append(x: Int, list: List[Int]): List[Int] = {

3 x :: list
4 }
5
6 //expected error message
7 // Found: (true : Boolean)
8 // Required: Int

Listing 4: day6
1 //question code

2 case class Color(red: Int,green: Int,blue: Int)
3

4 def revColor(c: Color): Color = {
5 c match{

6 case Color(r,g,b) => Color(255-r,255-g,255-b)
7 }
8 }
9
10 //expected error message
11 // missing argument for parameter blue of method apply in

object Color: (red: Int, green: Int, blue: Int):
Playground.Color

Listing 5: day7
1 //question code

2 def head(l1: List[Int]): Int = {
3 l1 match{

4 case Nil => 0
5 case x:: xs => x
6 }
7 }
8
9 //expected error message
10 // Unreachable case

Listing 6: day8
1 //question code

2 def makepairs(l1: List[Int] ,l2: List[Int]) : List[(Int
,Int)] = {

3 (l1,l2) match {

4 case (Nil,_) => Nil

5 case (_,Nil) => Nil

6 case (x1::x1s, x2::x2s) => (x1,x2) ::makepairs(x1s
,x2s)

7 }
8 }
9
10 //expected error message
11 // match may not be exhaustive.
12 //
13 // It would fail on pattern case: (Nil, List(_, _*))

Listing 7: day9
1 //question code
2 def ifprint(x:Int)(y:Boolean) : Int = {

3 if(y) print(x)
4 x
5 }
6
7 def print(x:Int): Int = {

8 ifprint (x) (true)
9 }
10
11 //expected error message
12 // Found: Boolean => Int
13 // Required: Int

Listing 8: day10
1 //question code

2 def grater[A](x: Int ,y: Int): Boolean = {
3 x > y
4 }
5
6 //expected error message
7 // None of the overloaded alternatives of method > in

class Int with types
8 // (x: Double): Boolean
9 // (x: Float): Boolean
10 // (x: Long): Boolean
11 // (x: Int): Boolean
12 // (x: Char): Boolean
13 // (x: Short): Boolean
14 // (x: Byte): Boolean
15 // match arguments ((y : A))

Appendix of
“Mind the Error Message” ITiCSE 2023, July 8–12, 2023, Turku, Finland

Listing 9: day11
1 //question code
2 def not(x: Boolean): Boolean = {

3 if (x == true) false

4 else true
5 }
6
7 //expected error message
8 // A pure expression does nothing in statement position;

you may be omitting necessary parentheses

Listing 10: day12
1 //question code

2 def numbering(list: List[String]):

List[(String, Int)] = {
3 def subnum(list: List[String], pos: Int): List[(

String, Int)] = {
4 list match {

5 case Nil => Nil
6 case x :: xs => (x, pos) :: subnum(xs, pos +

1)
7 }
8 }

9 subnum(list, 0)
10 }
11
12 //expected error message
13 // Found: Unit
14 // Required: List[(String, Int)]

C ABOUT CORRECTION
We found an incorrect quiz (day12) posted, so it was corrected on
October 28, 2023. The incorrect code was below. Also, we found
that the number of boxes on day9 and day11 was in the old version,
so revised it to the number that was actually used one.

Listing 11: incorrect day12
1 //question code

2 def plus_minus(list: List[Int]) : Int = {

3 def sub_p_m(list: List[Int] ,p_m:Int) : Int = {
4 list match{

5 case Nil => 0
6 case x:: xs => x * p_m + sub_p_m(xs,p_m*(-1))
7 }
8 }

9 sub_p_m(list,1)
10 }
11
12 //expected error message
13 // Found: Unit
14 // Required: List[(String, Int)]

	Abstract
	A Tasks and Results of Preliminary Experiment
	B Enbugging quizzes used in main experiment
	C About correction

